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Let £2 be a compact set in a Banach space X. The quantity

d,(02, X)=inf sup inf ||x —y]| (1)
I'n xeq yely

is called the n-width of £ in X (in the sense of Kolmogorov). The left
infimum in (1) is taken over all n-dimensional linear subspaces I, < X. One
can obtain various modifications of this definition by taking the infimum
over special classes of 7',. For instance, in X = L,[0, 27| one may consider
subspaces I, spanned by any n of the functions {exp(ik - )}, k€ Z. If the
infimum in (1) is taken over all such subspaces, the corresponding n-width,
introduced by Ismagilov [1], is called the trigonometric n-width, d7(£2, L,).
It is obvious that df >d,, but if the class 2 is translation-invariant, one
would expect that d7 =d,. And indeed, in all cases for which d7 has been
estimated, d” ~ d,(n— o).

In a more general setting, let G be a compact Abelian group with the
invariant measure g, u(G)=1. In X=L, =L (G,u) we consider the
subspaces I, of the form

I, = span {x.}, (2)
i<rgn
where y, are the (continuous) characters of G. The n-width (1), with X =1L,
and the infimum taken over all I', of the form (2), will be denoted by
dy(Q,L,).
Let now ¢ be a complex-valued function on G represented in L (G, u) by
the scries

[“8

@ = ArXks (3)

k

it
—

where {x,} is a sequence of (not necessarily all) characters and @, are
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complex numbers. Let W (¢) be the following class of complex-valued
functions

Wip)={xix=9xz |z, <1} (4)
(here and below |||, = [[ll.,). We shall assume for simplicity that |a,| are
nonincreasing. Let also

C,=sup infinja,| - 4,,} < o, (5)

where 4,, =la,i+ -+ +]a,|. The condition (5) is obviously satisfied if
3 |a,| = oo. It follows from (5) that for every n there exists such m > n that

Cnla,|<A,,- (6)

where C =1 (if ) |a,| =) or C={2C,) "

We shall use the notation «, < f,, if for two sequences, {«,} and if,}.
there is a constant M, independent of n, such that a, < Mf, for all n. We
shall write a, =g, if both a,<f, and B, <«,. Our main result is the
following statement.

THEOREM 1. Let W (@) be the class of functions defined by (3) and (4)
with |a,| nonincreasing and satisfying (5).

(a) For2<q< o,
dL(‘;]n(Wl((p)’Lq) <<Anmr[71’2 +qu‘ (7)

where m is any number satisfying (6), C, =1+ 2C and

.
-
o Xk

k=m+1

q

(b) If. in addition, Y |a,| < oo, 1<p<L2<qg<ow, p '+q "> 1L
then

dg(Wp((ﬂ)qu) 1:An1 _nl/n }’z' (8)

Let now for p > 1 and r > 0, W}, be the class of complex-valued functions
on T = R/2nZ with the rth derivative (in the sense of Weyl) restricted by the
inequality ||x”], < 1. This class if compact in L, if r>p ' —¢g~'. As an
application of Theorem 1 we prove

THEOREM 2. Ler 1<p<2<g<aoo,p '+q '>1.
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(a) Forr>1

dT(W", L) = n—"+"-172, )
(b) Forl—g '<r<l1

dT(W}, L) = n@/Da-n=-1/2, (10)

For unrestricted (non-trigonometric) n-widths, (9) and (10) are known from
[2] and [3], respectively. In the trigonometric case, (9) was established by V.
E. Maiorov [4] for > 1/p + 1/2. His rather complicated proof was based
on specific properties of the trigonometric system.

To prove Theorem 1 we need two lemmas.

LemMA 1. (Rosenthal [5]). Let 2<q < . Then there exists a
constant K, depending only on q so that if v,,7,,.., 7, are independent
random variables belonging to L, and E{y,} =0 for all k, then

£ |

q

Z Vi
k=1

(£ Emnm) " (S e |

k=1 m=1

1/q
) < K, max

LeEmMMma 2. Let Q= {t} be a set with a measure u; 2<gq < o;
u, € L(Q,u) (k=1,2,..) and sup, |u,(t)|=S(t)EL,. Let u be a function
representable in L, by the series

AUy,
1

=
Il
i[8

where a, are complex numbers with |a,| nonincreasing and satisfying (5).
Then for any natural n there exists v* € L, of the form

*
by
1

e

0
v* = \.,1
k=

with at most c,n non-zero b} such that
“u—v*ll<Anmn_l/2+qu’ (11)

where m is any number satisfying (6), ¢, =1+ 2C, R, =132 .1 agtlly-

Progf. For a given n, let m be a number satisfying (6). We define
independent random variables b,, b, ..., b,, by the formula

ab0;", with the probability 8, = C, |a,| 4 .

b =
7 o, with the probability 1 — 6,.
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We shall estimate the expectation E{iju — v|,}, where v is defined by

n—1 m
v= N aquut N b,
ko1 k -n

We have jju —vil, <R, +|wl,. where

m
w= N (g, — b)) uy.
k-n

Now observe that
m } 4

Efliw ) 7\ } N e b udn)]
T 0 k on :

gd/u. (12)

Set. for a fixed ¢ y, = (a, — b,)u,(t). We wish to apply Lemma 1 to 3,.
Obviously. E{y,} = 0. We also have

Efpy 4 = lupn) Eflay, — by [t
S - a1l —6,)78, “+ 1 -6,
L2541y - lag it 6, .

So

_"E E{y V<280 Y i [Cnlayg- Al Y

K n

=2C" 489t veAY (13)

Hence.

(¥ Epn) <2e vsin way, (14)

ckoon
Comparing (13) and (14) and applying Lemma | to (12). we have

E{ljw]idy < A%, n "'Z\ SUydt = A4, n 4. (15)

On the other hand, the expectation of the number # of non-zero coefficients
{bi} 1s

E{i}=0,+ - +86,=Cn.

n

Since both random variables, |w||? and A, are positive, there should exist a
realization for which both ||wi|d < 2E{||wl[i} and 7 < 2E{n}. Let us denote
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by, w and v corresponding to this realization by b}, w* and v *, respectively.
It follows from (15) that, in view of the preceding remark, {ju —v*||, <
R, +11W*|l, <R, + Ayun "2, which proves the lemma since the number
of nonzero coefficients in v* does not exceed n + 2Cn.

Proof of Theorem 1. Since |x,|= 1, Lemma 2 is applicalbe with u=¢
and u, =y,. Let y denote v* provided by Lemma 2. Now, for x € W (p),
x=¢=*z,|z|,<1,set y, =y z. By the Young inequality for convolutions,

||X—qu < “(0 - lV”q * Hz“l <Anm ) n71/2 + qu’ (16)

while {y,} belongs to a subspace spanned by at most C, - n characters, so
(7) is proved.
Now consider the operator

Kz=(p—y)=*z.

To prove (8) it is enough to show that
|K:L,»LJ|<Apw-n'?3"2 (17)

For p=1, ¢ > 2 this is a limit {m — co0) version of (16). On the other hand,
it is easy to verify that, in view of (5), in the notation of Lemma 2 (with
v¥=y*) |K:L,— L,|| <supy|a, —bf|<24,.(Cn)~', which agrees with
(17). Now, for the indicated range (p, g), (17) is an immediate consequence
of the Riesz—Thorin interpolation theorem. This finishes the proof of (8)
since the distinction between n and C,n is, in the context of (8), immaterial.

Proof of Theorem 2. 1f x € W7, then x = const + ¢ * z, where ||z||, < 1,

o= Y (k)" exp(ik-).
k#0
The conditions of Theorem 1 are obviously fulfilled. If r> 1, then
A, =n""*" and the upper estimate in (9) follows from (8).
If 1—g='<r<1l, weset m=n%?in (7). It is easy to verify (using, for
instance, Abel’s transformation) that

N (k) exp(ik ) || <mmrtel
1kl >m q
So, by (7)
dar (W', L )<m—r+1 nm Vet — e/ -n—12
cn s g/ ™ —

which is equivalent to the upper estimate in (10).
The lower estimates in (9) and (10) follow from [2] and [3].

Remarks. (1) The condition |a,| | in Theorem 1 is not essential for it
can be always satisfied by rearrangement. Indeed, for both the statement and
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the proof of (7) this condition is needed only for a finite number of terms,
while in the case (b) the series (3) converges unconditionally. This obser-
vation is important when there is no “natural” order of characters in (3). To
illustrate this remark, consider the class W defined by (3) and (4) in the case
when G =T, (t,1,) € T?,

o 1) =N (k)7 (ik,) " exp(ikt + ik, 1,). (18)

k,ky#0

We assume here that 1 <r<r,. Let a; denote the absolute values of the
coefficients in (18) arranged in a nonincreasing way. An elementary
computation shows that a; =j " if r <r, and a; =j "(logj)" if r =r,. The
conditions of Theorem 1(b) are satisfied and (8) gives

di(W, L)< n "7V (log nye, (19)

where ¢ =0 if r <r, and a =1 if r=r,. This estimate for the unrestricted
(non-trigonometric) case was announded in [6], where it is also claimed that
the order in (19) is exact for d, and therefore, for d.

(2) The order of d,(W,,L,) (2 <gq < o) is still not known: the upper
estimate provided by Theorem [ and the lower estimate from [3| differ in a
logarithmic factor.

(3) The method of approximation considered in this paper is linear. So
Theorem 2 gives also an estimate for the linear n-widths, a,(W,, L, ). Our
proof can be extended to give an exact order of a, also for the case r > I,
p<2<q. p " +g' < 1. However, in terms of linear n-widths, our result is
new only for r < 1 (see, e.g. |7]).
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