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Let Q be a compact set in a Banach space X. The quantity

dn(Q, X) = inf sup inf Ilx - yll
f n XEQ YEf n

(1)

is called the n-width of Q in X (in the sense of Kolmogorov). The left
infimum in (1) is taken over all n-dimensional linear subspaces Tn C X. One
can obtain various modifications of this definition by taking the infimum
over special classes of Tn' For instance, in X = L q 10, 2n lone may consider
subspaces Tn spanned by any 11 of the functions {exp(ik·)}, k E 11. If the
infimum in (1) is taken over all such subspaces, the corresponding n-width,
introduced by Ismagilov [1], is called the trigonometric n-width, d~(Q, L q ).

It is obvious that d~;> dn , but if the class Q is translation-invariant, one
would expect that d~ = dn' And indeed, in all cases for which d~ has been
estimated, d~ ~ dn(n --> 00).

In a more general setting, let G be a compact Abelian group with the
invariant measure fJ., fJ.(G) = 1. In X=Lq=Lq(G,fJ.) we consider the
subspaces Tn of the form

Tn = span {Xv},
I (l'(n

(2 )

where X" are the (continuous) characters of G. The n-width (1), with X = L q

and the infimum taken over all Tn of the form (2), will be denoted by
d~(Q, L q ).

Let now qJ be a complex-valued function on G represented in Lq(G, f.1) by
the series

CD

qJ = L akXk'
k=l

(3 )

where {Xk} IS a sequence of (not necessarily all) characters and ak are
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complex numbers. Let Wp(cp) be the following class of complex-valued
functions

(4)

(here and below II· lip = 11·111). We shall assume for simplicity that! a k I are
nonincreasing. Let also

Co=sup inf{nlanl·An~f< 00,

'"
(5 )

where An'" = lani + ... + la",l. The condition (5) is obviously satisfied if
L Iak I = 00. It follows from (5) that for every n there exists such m > n that

(6)

where C = I (if L lakl = (0) or C = (2Co) '.
We shall use the notation an -<f3n' if for two sequences, la nf and ~f3ni,

there is a constant M, independent of n, such that an <Mf3n for all n. We
shall write an:::: f3n if both an -< f3 n and f3 n -< an' Our main result is the
following statement.

THEOREM 1. Let Wp(cp) be the class offunctions defined by (3) and (4)
with Ia k I nonincreasing and satisfying (5).

(a) For 2 <q < 00,

(7)

where m is any number satisfying (6), C 1 = 1 + 2C and

(b) If, in addition, Lla k ! < 00, 1~p~2~q < 00, P 1 +q 1> L
then

(8)

Let now for p ~ 1 and r > 0, W; be the class of complex-valued functions
on T= R/2nlL with the rth derivative (in the sense of Weyl) restricted by the
inequality Ilx(r)llp < L This class if compact in L q if r>p '~q-l. As an
application of Theorem 1 we prove

THEOREM 2. Let 1 <p <2 <q < 00, P I + q '> 1.
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(a) For r> 1

(b) For 1 - q-l < r < 1
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(9)

(10)

For unrestricted (non-trigonometric) n-widths, (9) and (10) are known from
[2J and [3], respectively. In the trigonometric case, (9) was established by V.
E. Maiorov [4] for r> l/p + 1/2. His rather complicated proof was based
on specific properties of the trigonometric system.

To prove Theorem 1 we need two lemmas.

LEMMA 1. (Rosenthal [5 D. Let 2 ~ q < 00. Then there exists a
constant K q depending only on q so that if Yl' Y2 ,... , Yn are independent
random variables belonging to L q and E {yk! = 0 for all k, then

LEMMA 2. Let Q = {t} be a set with a measure f.l; 2 ~ q < 00;

ukELq(Q,f.l) (k= 1,2,... ) and sUPkluk(t)I=S(t)ELq. Let u be a function
representable in L q by the series

00

U= ~
k=l

where ak are complex numbers with lakl nonincreasing and satisfying (5).
Then for any natural n there exists v* E L q of the form

00

v*=~ b"tuk
k=l

with at most c1 n non-zero b: such that

(11 )

where m is any number satisfying (6), C 1 = 1 + 2C, R mq = II L:~~m + I akuk Il q •

Proof For a given n, let m be a number satisfying (6). We define
independent random variables bn , bn + 1"'" bm by the formula

with the probability Ok = Cn Ia k IA ;~

with the probability 1 - Ok'
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We shall estimate the expectation E {il II - v IU, where l' is defined by

n-l m

t' = \' akuk + \ ' bku,.
, I k II

We have 1111 - l' ILl ~ R m " + IllI'!", where

m

1\'= \' (a,-bdu,.
II. "

Now observe that

Set. for a fixed I. )', = (a, _. b,) u,(t). We wish to apply Lemma
Obviously, E{id = O. We also have

EjiY,,"r = IUk(t)I" El!a, -b,I"1

~ S'I(I) ·Ia,," [(\ - fi,)" fi~ 'I t 1 - fI,[

~ 2S"(1) . !adl e~ 'I

So

m

\' Eji)',!'lf~2S"(t)\' akl'I[Cn!u,I.AIlIl:1 1
'I

II. n

Hence.

('. ~', EI!') ,2 1')""2 ,;:.2'I12 c i/icS'I(I)n '1.2A'1
__ 1 I k I ( ~ tim'

k n

Comparing (13) and (14) and applying Lemma I to (12), we have

EIII'''II'''ql A" 11 qn I Sq(l)dl- A
q n q2\" f nm -. nm .

'1,1

(12 )

( 13)

(14 )

(15 )

On the other hand, the expectation of the number ii of non-zero coefficients

1bk f is

E\iif = en + ." + em = Cn.

Since both random variables, !! w !I~ and ii. are positive. there should exist a
realization for which both \lw!l~~2Elllwil~~ and li~2Elii}, Let us denote
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bk, wand v corresponding to this realization by bt, w* and v*, respectively.
It follows from (15) that, in view of the preceding remark, Ilu-v*ll q <
Rmq + II w* Il q <; Rmq +A nm n - 1/2, which proves the lemma since the number
of nonzero coefficients in v * does not exceed n + 2Cn.

Proof of Theorem 1. Since IXkl = I, Lemma 2 is applicalbe with u = ((J
and Uk=Xk' Let IfI denote v* provided by Lemma 2. Now, for xE WI«((J),
x = ((J * z, II Z III < I, set y x = IfI * z. By the Young inequality for convolutions,

while {yx} belongs to a subspace spanned by at most C I . n characters, so
(7) is proved.

Now consider the operator

Kz = «((J - 1fI) * z.

To prove (8) it is enough to show that

11K: Lp ---> Lqll <A nw • n l/p-3/2. (17)

For p = I, q> 2 this is a limit (m ---> (0) version of (16) On the other hand,
it is easy to verify that, in view of (5), in the notation of Lemma 2 (with
V*=IfI*) IIK:L2--->L211<suPklak-btl<2An"c(Cn)-\ which agrees with
(17). Now, for the indicated range (p, q), (17) is an immediate consequence
of the Riesz-Thorin interpolation theorem. This finishes the proof of (8)
since the distinction between nand C I n is, in the context of (8), immaterial.

Proof of Theorem 2. If x E W~, then x = const + ((J * z, where Ilzilp < I,

((J = I (ik)-r exp(ik·).
k*O

The conditions of Theorem 1 are obviously fulfilled. If r> 1, then
A ncx :::::: n- r+ 1 and the upper estimate in (9) follows from (8).

If 1 - q -I < r < 1, we set m = n q
/

2 in (7). It is easy to verify (using, for
instance, Abel's transformation) that

II
L (ik)-reXP(ik·)11 <m-r+ l

-
q- l

•

Ikl >m q

So, by (7)

d T (Wr L ) ~ m- r+ I • n- l /2 +m-r+ I-_q-l - n(q/2)(l-r)-I/2
Cln l' q~; --

which is equivalent to the upper estimate in (10).
The lower estimates in (9) and (10) follow from [2 j and [3].

Remarks. (1) The condition Iak 11 in Theorem 1 is not essential for it
can be always satisfied by rearrangement. Indeed, for both the statement and
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the proof of (7) this condition is needed only for a finite number of terms,
while in the case (b) the series (3) converges unconditionally. This obser~

vation is important when there is no "natural" order of characters in (3). To
illustrate this remark, consider the class W defined by (3) and (4) in the case
when G = T 2

, (t, tt) E T 2
,

rp(t, tt) = \" (ik)-r (ik1)-r, exp(ikt + ik 1t 1 ).

k.k, TO

( 18)

We assume here that I < r,;;; r l' Let a j denote the absolute values of the
coefficients in (18) arranged in a nonincreasing way. An elementary
computation shows that aj ~j-r if r < r j and a j ~j-r(logjr if r = r l . The
conditions of Theorem 1(b) are satisfied and (8) gives

d~(W, L
q

) n r+ IIp-l/2 . (log nYQ, ( 19)

where a = 0 if r < r 1 and a = 1 if r = r l' This estimate for the unrestricted
(non~trigonometric) case was announded in [61, where it is also claimed that
the order in (19) is exact for dn and therefore, for d~.

(2) The order of dn(W:, L q ) (2 < q < co) is still not known: the upper
estimate provided by Theorem 1 and the lower estimate from [31 differ in a
logarithmic factor.

(3) The method of approximation considered in this paper is linear. So
Theorem 2 gives also an estimate for the linear n~widths, a n( W;" L q ). Our
proof can be extended to give an exact order of all also for the case r > I.
p';;; 2 ,;;; q, P - 1 + q ~ j < 1. However, in terms of linear n~widths, our result is
new only for r < 1 (see, e.g. 17 I).
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